Catalytic mechanism and three-dimensional structure of adenine deaminase.
نویسندگان
چکیده
Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k(cat) = 2.0 s(-1); k(cat)/K(m) = 2.5 × 10(3) M(-1) s(-1)). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn(2+) prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k(cat) and k(cat)/K(m) values of 200 s(-1) and 5 × 10(5) M(-1) s(-1), respectively. The apoenzyme was prepared and reconstituted with Fe(2+), Zn(2+), or Mn(2+). In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe(II)/Fe(II)]-ADE was oxidized to [Fe(III)/Fe(III)]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe(III)/Fe(III)]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Mössbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 Å resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.
منابع مشابه
Caffeine effect on adenosine deaminase catalysis: A new look at the effect of caffeine on adenosine deaminase activity
The effect of physiological concentrations of caffeine (purified from Persian tea) on adenosine deaminase (ADA) activity at physiological and pathological concentrations of adenosine (as substrate) in 50 mM Tris-HCl buffer (pH 7.3) at 37°C was investigated, using UV-VIS spectroscopy. ADA exhibited a bi-phasic activity behavior and both phases showed positive cooperativities indicating adenosine...
متن کاملCaffeine effect on adenosine deaminase catalysis: A new look at the effect of caffeine on adenosine deaminase activity
The effect of physiological concentrations of caffeine (purified from Persian tea) on adenosine deaminase (ADA) activity at physiological and pathological concentrations of adenosine (as substrate) in 50 mM Tris-HCl buffer (pH 7.3) at 37°C was investigated, using UV-VIS spectroscopy. ADA exhibited a bi-phasic activity behavior and both phases showed positive cooperativities indicating adenosine...
متن کاملAn evolutionary treasure: unification of a broad set of amidohydrolases related to urease.
The recent determination of the three-dimensional structure of urease revealed striking similarities of enzyme architecture to adenosine deaminase and phosphotriesterase, evidence of a distant evolutionary relationship that had gone undetected by one-dimensional sequence comparisons. Here, based on an analysis of conservation patterns in three dimensions, we report the discovery of the same act...
متن کاملThree-dimensional structure and catalytic mechanism of cytosine deaminase.
Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K(i) of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the dival...
متن کاملStructure and catalytic mechanism of glucosamine 6-phosphate deaminase from Escherichia coli at 2.1 A resolution.
BACKGROUND Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldoseketose isomerases, but its reaction also accomplishes a simultaneous amina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 50 11 شماره
صفحات -
تاریخ انتشار 2011